Cements – Composition, Types

- Finish up cement manufacture
- Properties of component phases
- Types of cements

Chapter 2 – Properties of Concrete – Neville
Chapter 6 – Concrete....Mehta and Monteiro

Summary of Kiln Reactions

Clarkson

After Mindess and Young Figure 3.2

CLINKER

Clinker is what comes out of the kiln

- 3 to 25 mm in diameter
- 20-25% Molten

Compound Composition of Clinker / Cement

- Four major compounds formed from the oxides under high temperature in the kiln
- Name (Oxide Notation) Shorthand
- Tricalcium silicate (3 CaO. SiO₂) C₃S
- Dicalcium silicate (2 CaO. SiO₂) C₂S
- Tricalcium aluminate (3 CaO. Al₂O₃) C₃A
- Tetracalcium aluminoferrite (4 CaO. Al₂O₃.
 Fe₂O₃) C₄AF

Summary of Cement Compounds

Clarkson

UNI

Name	Formula	Shorthand	Weight %
Tricalcium silicate (Alite)	3 CaO. SiO ₂	C ₃ S	~55-60
Dicalcium silicate (Belite)	2 CaO. SiO ₂	C ₂ S	~15-20
Tricalcium aluminate	3 CaO. Al ₂ O ₃	C ₃ A	~5-10
Tetracalcium aluminoferrite	4 CaO. Al ₂ O ₃ . Fe ₂ O ₃	C₄AF	~5-8
Gypsum	CaSO ₄ . 2H ₂ O	CSH ²	~2-6

Implications of compound composition

- Determines the physical and mechanical characteristics of the cement
- Determines its chemical activity
- Determines its scope of use
- Determines the cost

Contributions of Compounds to Strength

- C₃S contributes to high early strength to make high early strength concrete, higher C₃S proportions needed
- C₂S contributes to later age strength defines the long term strength
- C₃A reacts immediately with water defines set
- In the absence of gypsum, C₃A causes flash set

Compressive strength development of pure cement compounds

 C₃A reacts instantaneously

Clarkson

- Final strength determined by C₃S and C₂S
- Increase C₃S for high early strength

- Remember the compound name, oxide notation, and the shorthand notation...
- Just to make sure that cement and concrete is complicated, tricalcium silicate in its impure form in clinker is historically called <u>Alite</u>
- Even more complication arises various crystalline polymorphs of tricalcium silicates exist
- Similar troubles for other compounds also

- Not all cement components can be expressed by the oxide formulae and shorthand notation
 - Chlorides, Fluorides etc
 - Expressed using normal chemical formulae
- Mineral names are commonly used for raw materials (calcite, quartz) and for some cement hydration products (ettringite, portlandite etc)

Be clear what you mean when you say "Lime"

- "Lime" can be used for CaO, either by itself or in combination with other components
- "Lime" can be used for Calcium hydroxide (also called portlandite, abbreviated as CH)
- "Lime" is sometimes used for limestone rock or its major chemical component calcium carbonate

Manufacturing control criteria in the Kiln

- Silica Modulus (SM) :
 2.3 to 3.5 (desired at least 3.0), slow reaction if SM is high
- Alumina Modulus (AM): ~2, controls melt temp
- Lime Saturation factor (LSF): 0.92-0.96
 - Designed to insure against equilibrium free lime

$$SM = \frac{SiO_2}{Al_2O_3 + Fe_2O_3}$$

$$AM = \frac{Al_2O_3}{Fe_2O_3}$$

$$LSF = \frac{CaO}{2.2SiO_2 + 1.18Al_2O_3 + 0.65Fe_2O_3}$$

Bogue's Equations – Compound composition

- To calculate the amounts of C₃S, C₂S, C₃A, and C₄AF in clinker (or the cement) from its chemical analysis (from the mill certificate)
- Assumptions in calculations
 - Chemical equilibrium established at the clinkering temperature
 - Components maintained unchanged through the rapid cooling period
 - Compounds are "pure"

Bogue's Equations

■ C₃S = 4.071C - 7.6S - 6.718A - 1.43F - 2.852S

Clarkson

- $C_2S = 2.867S 0.7544C_3S$
- $C_3A = 2.65A 1.692F$
- $C_4AF = 3.043F$

Bogue's Equations

■ C₃S = 4.071C - 7.6S - 4.479A - 2.859F - 2.852S

Clarkson

- $C_2S = 2.867S 0.7544C_3S$
- $C_3 A = 0$
- C₄AF = 2.10A + 1.702F

Summary of Kiln Reactions

Clarkson

After Mindess and Young Figure 3.2

Clinker Microstructure

Dark, Rounded – C_2S

C₃S crystals magnified 3000 times

Light, Angular – C₃S

Schematic of a Grinding Mill

Clarkson UNIVERSITY

Grinding Mill

Loud Process

Fineness Influences Performance

Fineness of cement

- Measures of fineness
 - Specific surface
 - Particle size distribution
- Blaine's fineness
 - Measure of air permeability
- Typical surface areas
 - ~ 350 m² / kg (Normal cements)
 - ~ 500 m² / kg (High early strength cements)

PSD of cement

ciks.cbt.nist.gov/~garbocz/ nistir6931/node29.htm

Clarkson

UNIVERSITY

- Finer cement = Faster reaction
- Finer cement = Higher heat of hydration
- Large particles do not react with water completely
- Higher fineness
 - Higher shrinkage
 - Reduced bleeding
 - Reduced durability
 - More gypsum needed

Summary of the Cement Making Process

Clarkson UNIVERSITY

Some practical issues about cement Clarkso making

- Scale of the business (local / national)
- LOCATION
- Plant operations
- Wet versus Dry process
- Energy savings Preheaters, Dust
- Energy and fuels
- Environment

- About 175 plants nationwide
- Cost of maintenance plant and the environment
- Rising fuel costs raw material quality and fuel dependence
- Continuous operability

Portland Cement Types (ASTM C 150)

- ASTM C 150 (AASHTO M 85)
- 5 types in general types I to V
- Type I Normal (OPC)
- Type II Moderate Sulfate Resistance
- Type III High early Strength
- Type IV Low heat of hydration
- Type V High Sulfate Resistance
- Chemical compositions different

- Type IA Normal (OPC) air entraining
- Type IIA Moderate sulfate resistance –air entraining
- Type IIIA- High early strength air entraining

Typical Compositions

ASTM		C₃S	C ₂ S	C ₃ A	C ₄ AF	B. Fineness Kg/m2
туре		%	%	%	%	
I	General Purpose	55	19	10	7	370
Ш	Mod Sulfate Mod Heat	51	24	6	11	370
Ш	Early Strength	56	19	10	7	540
IV	Low Heat	28	49	4	12	380
V	Sulfate Resistant	38	43	4	9	380

Applications of Type- I cement

Clarkson

UNIVERSITY

Applications of Type II and IV

Clarkson

VERSITY

Clarkson UNIVERSITY

BE AWARE OF THIS

- Type of cement is no guarantee against other bad concreting practices
- To be durable, you have to get the basics right: the cement type is just an aid
- Water-cement ratio is key
- <u>Top picture w/c 0.69,</u>
 <u>Type V</u>
- <u>Bottom picture w/c 0.35,</u>
 <u>Type V</u>

Applications of Type III (High early strength)

Clarkson UNIVERSITY

Applications of Type IV (Low Heat)

White Portland Cement

Clarkson

UNIVERSITY

- ASTM C 595 (AASHTO M 240)
- Blending supplementary materials into OPC
- Improves properties (we will see in detail how this is effected)
- Reduces cost materials like fly ash are waste products from other industries
- Environmental effects –concrete acts as a sink to hazardous products

- Type IS –Portland blast furnace slag cement
- Type IP, Type P Portland Pozzolan cement
- Type I(PM) Pozzolan modified Portland cement
- Type S –slag cement
- Type I (SM) Slag modified pozzolan cement

Other Hydraulic Cements

- ASTM C 1157 6 types
- Type GU General Use
- Type HE High early strength
- Type MS Moderate sulfate resistance
- Type HS High sulfate resistance
- Type LH Low heat of hydration
- Type MH Moderate heat of hydration